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ABSTRACT

The “"Reynolds Analogy” as well known, is a remarkable
relationship, found by Reynolds, between the momentum and
the energy transfer within the boundary layer in the case of an
incompressible low speed flow over an isothermal flat plate, that
allows, under the restriction of flows with uniform external
boundary conditions, the strightforward evaluation of the heat
flux at the wall in terms of the shear stress evaluated at the wall.

An extension of such analogy is proposed in the present
paper for the cases in which the external flow boundary
conditions are non uniform due to the establishment of
accelerated flows along bidimensional and axisymmetric bodies;
such cases have a wider interest for the pratical applications in
the supersonic vehicle design.

The more general relationship between the heat flux at the
wall, expressed in its adimensional form by the Stanton number,
and the shear stress at the wall, expressed in adimensional form
by the shear coefficient, is established on the basis of the
momentum and energy boundary layer integral equations.

- The analogy factor in the present formulation is expressed
in terms of functions relating boundary layer quantities
that can be
evaluated on the basis of known results of similar solutions

depending on a velocity gradient parameter,

suitably correlated; the proposed approach evidentiates also the
influence of the non similarity effects related to the variation
along the body surface of the velocity gradient parameter and
provides a mean to partially account for their influence on the
analogy factor.

Simple formulas have been developed correlating the
similarity flow results of Dewey and Gross for the case of a
Prandtl number equal to 0,7, a power low viscosity-temperature
relationship with oo = 0.3 and a unit value of the hypersonic
parameter appearing in the dissipation term of the energy
equation characteristic of the supersonic flow conditions; these
formulas provide in terms of a velocity gradient and a wall
temperature parameter the values of the analogy factor on the
basis of which the Stanton number and therefore the heat flux at
the wall can be evalutated once tire skin friction coefficient
distribution along an assigned body surface is known.
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INTRODUCTION

The advent of pratical applications of the high speed flows
analysis associated with supersonic aircraft or space vehicles
construction, has posed to the design engineer a series of
challanging problems among which outstanding is the one of
" Aerodynamic Heating’' of simple and complex body shapes.

A severe heat transfer from the fluid to the body surface
occurs under the high speed flow conditions as a result of the
conversion the kinetic energy of motion by means of friction
within the thin layer of the retarded flow that envelopes the
body; such a heat transfer that may provoke inadmissible high
temperatures of the body surface if not shielded needs to be
accurately predicted.

The correct evaluation of the heat flux distribution along
the surface of a body requires the detailed knowledge of the
flow field that is established around the body itself; being
impractical, for the high difficulties associated, the direct
solution of the complete Navier-Stockes equations ruling as
known the motion of viscous fluids, special solutions are usually
obtained with the aid of the “Boundary Layer Theory"’; such a
theory provides, for engineering applications, a very pawerfull
method for predicting, with high accurancy, the skin friction and
the heat flux distributions at the surface of bodies that are the
fundamental quantities needed in the design of an aercsoace
vehicle.

The basic idea of the “Boundary Layer Theory” due -to
Prandtl is well knowr.: the flow field established around a body is
subdivisible into two regions, an external one in which the fluid
viscosity effects are neglected and an internal one where the fluid
viscosity has on the contrary a predominant influence, while
other terms of the complete equations can be neglected thus
obtaining a simpler set of equations, the so called Prandtl or
Boundary Layer equations.

Nevertheless even for simple shapes the mathematical
difficulties for resolving these simplified equations are so severe
that only by means of numerical procedures the complete
solution providing the details of the flow fieid close to the body
can be found.

The design engineer interest is confined in many cases only



on the effects that the high speed flow produces on the body
surfaces, -that is to say on the skin friction and on the heat fluxes
distribution; of pratical interest are therefore the "'Integral

Methods” that have been established to evaluate such properties

without requiring the detailed knowledge of all the flow field

established around the body.

One of the major difficulties in solving high speed flow

boundary layer equations is the coupling between the dynamic
and the. thermal fields; at high speeds indeed the heat due to
friction and compression within the boundary layer needs to be
taken into account in the energy balance and therefore in
addition to the usual dependence of the temperature field from
the velocity field existing also at low speed conditions, the
dependence of the velocity on the temperature field has to be
accounted for, resulting in a complex coupling. Such a situation
requires the combined solution of the dynamic and thermal
fields, that is to say the momentum and energy conservation
equations need to be solved contemporaneously to obtain the
shear stress and the heat flux values at the body surface.
The classical low speed boundary layer equations allow on the
contrary the separate treatment of the dynamic field on the basis
of the momentum conservation equation alone, the temperature
field being solved subsequently on the basis of the velocity field
knowledge; as a consequence the heat flux is more simply
evaluated on the basis of the skin friction value in virtue of the
"Reynolds Analogy’’, when applicable.

Purpose of this note is to present an extension of the
"Reynolds Analogy” derived on the basis of the integral
momentum and energy equations that is applicable to the high
speed flow conditions, also in presence of a non uniform external
flow field; and the basic
boundary layer equations in their local and integral form, utilized
for obtaining the new relationship that allows the heat flux

the classical “Reynolds Analogy*

evaluation on the basis of the skin friction knowledge, are briefly
recalled.

THE REYNOLDS ANALOGY

A remarkable relation of proportionality between the skin
friction and the heat transfer was discovered in 1874 by
Reynolds [ 1], which is known as “’Reynolds Analogy between
Momentum and Energy Transfer””. This relation can easily be
demonstrated on the basis of the classical

equations for the particularly simple case of

boundary layer
low speed
incompressible flow over an isothermal flat plate, that is to say in
absence of pressure gradients and of frictional heat.

It turns out in fact that under such conditions the
momentum equation (1) is identical to the energy equation (2)
on condition that the Prandtl number P,-.—.,Aq;/K is equal to
unity; the boundary conditions being as well identical at the wall
{3) and at the edge of the boundary layer {4).
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The solution for -t /e and (T"Tw )/( Te -Tw) have
therefore the same identical form, the velocity and temperature
profiles are similar and the dynamic boundary layer has the same
thickness of the thermal one,

Being the local skin friction and the heat flux at the wall
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fields, being equal the gradients at the wall, that the heat flux can
be expressed as :

9. = ,KT [( Tr.-Tw)/'blc] a3

that is to say the heat flux is proportional to the skin friction.
Introducing the skin friction coefficient

Cy = 'Zw/(‘/z. y,u:)

and the Stanton number
.-Sf = (Nw/Rc ﬂ-) - ﬁw/fe CF Ue (Te‘Tw]

the above recalled '"Reynolds Analogy’ takes the very simple
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classical form:
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Extensive use has been made of such a simple relation,
suitably modified to broaden its range of validity, to obtain,
from known skin friction distributions, evaluated according to
existing methods based on momentum equation solutions, the
distribution of the heat flux without solving the energy equation
contemporaneously.

In its original form the ‘"Reynolds Analogy’’ is affected as
recalled by severe limitations: Prandtl number equal to one, no
account for frictional heating, incompressible flow, absence of
gradients in the external flow at the edge of the boundary layer.

The first extension has been introduced to account for a
Prandtl number different from unity, it has been found that the
Stanton number remains even for Pr;e 4 proportional to the
coefficient of skin friction excepts that the factor of
proportionality known as Reynolds Analogy factor is a function
of the Prandt! number. Several forms of the analogy factor have
been proposed, the more widely accepted one is due to Colburn

o (1)

Sucessively the frictional heat has been taken into account
for incompressible flows, by Eckert and Weise [3] who found
that the equations remain unchanged if the Stanton number is
defined with reference to the temperature difference ('IZ... -Tw)
instead than (Tc. -Tw) being Jaw the adiabatic wall



temperature.

For the case of compressible laminar flow over an
isothermal flat plate, the equation relating the temperature field
to the velocity one remain approximatively the same as for
incompressible flows and for B-= 4 even exactly the same; the
analogy therefore can be extended on condition that the Stanton
number js formed with the temperature difference (Twu —Tw)
as previously discussed.

The importance of the Reynolds analogy, demonstrated for
the laminar flow condition, is even more increased by the
consideration that it retains its validity under the conditions
previously discussed, also in the case of turbulent flows.

The major limitation of the Reynolds Analogy, that written
in its more general form to account for the Prandtl number
effects,turns out to be

St
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, is the applicability
only to uniform flows in absence of gradients at the edge of the
boundary layer.

with S the analogy factor equal to Fr

Exact boundary layer equations solutions have shown, as we
will recal in detail, that when the velocity or pressure gradient
parameter is different from zero, remarkable deviations from the
classical analogy exist; accelerated flows, that is to say flows with
positive velocity gradients, lead to an analogy factor that, when
account is taken of the Prandtl number effect, is smaller than
one. The influence of the wall temperature, kept constant along
the body in the exact solutions, is as well quite noticeable; the
analogy factor being lower the higher the wall temperature.

In spite of this evidence in too many cases the Reynolds
Analogy has been nevertheless used to obtain from the skin
friction values the heat flux distribution along bodies, also in
presence of velocity gradients at the edge of the boundary layer.

An attempt of extension of the Reynolds Analogy will be
presented in this note for compressible laminar boundary layer
flows, properly accounting for the effects produced by the non
uniformity of the external flow field; in particular the condition
of accelerated flows that has an high pratical interest for its
engineering applications to aircraft and missile design is treated.

THE BOUNDARY LAYER EQUATIONS IN COMPRESSIBLE
FLOW

The well known equations for the laminar compressible
boundary layer flows over two dimensional and axisymmetric
bodies are recalled in their classical forms: local equations valid
at any point within the boundary layer and integral or global
equations valid as a mean value across the boundary layer
thickness.

Local Equations

Using the (x, y) orthogonal roordinate system, with x
measured along the body surface (origin at the nose or leading
edge) and y measured along the outwards normal at the body
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surface, the local boundary layer equations expressing the
conservation of mass, momentum and energy within the
boundary layer, for the steady flow of a perfect gas over an
unyawed body are:

Continuity

bl KR (3
X Momentum :
d i -_9P 4 9 (uridu
guﬁlwyvﬁ_ 7+ﬁ61(F ’S (1)
Y Momentum
;jTP <0 (5)
Energy L
OH v OH|_ 2 [2 p igH), O (E (fa)rd X
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with u, v the velocity components along the x and y directions, H
the total enthalpy H = h + /o A and r=r (x, y) the local
distance measured from the axis of symmetry.

The above system of non linear partial differential equations
is obtained under the assumption that the boundary layer
thickness is small compared to the longitudinal body radius of
curvature and that the centrifugal forces are negligible: they
contain the transverse curvature terms specified by rd according
to the formulation by Yasuhara [4] for the two dimensional
flows 4 = 0, for the axisymmetric flows {=1.

The perfect gas assumptions allow to establish the remaining
equations enabling the resolution of the system of conservation

equations
— Equation of state p=pRT ('?)
— Enthalpy relation h= GT (19)

the
equations, valid at every point within the boundary layer, are the

Associated to system differential conservation
boundary conditions established at the wall (y=0) and at the
outer edge of the boundary layer {y=d ) where the external
inviscid flow conditions are matched; these conditions uniquely
determine the solution.

At the wall the requirement of no slip imposes the velocity
condition:

AL=V = D

A—t A‘J:O (l‘})

while the temp:rature may satisfy the condition of no heat
transfer (adiabatic wall) or of specified value

(%%).= 0 QT)°=TW PAS Aé=o (20)
At the outer boundary, the edge of the boundary layer, the

o

values of the velocity and temperature are specified by the
inviscid flow solution

A= Ade Mt‘;\v T TL

ALt 1:.;- (21)

In spite of the boundary layer assumptions that introduce
remarkable
Navier-Stokes equations the mathematical difficulties associated
with the solution of the boundary layer equations are relevant

simplifications with respect to the complete

expecially when the compressibility, the pressure gradient and



the heat transfer effects are accounted for; only very few general
solutions' have therefore been obtained, that are valid under
restrictive conditions, an important class of such solutions are the
ones known as “'Similar Solutions"’.

"Similar Solution’

Coordinate transformations have been studied starting from
Blasius that allow the reduction of the boundary layer partial
differential equations to ordinary differential equations thus
facilitating their solution.

Several transformations exist, the more general is the one of
Lees-Dorodnitsyn that contains the Blasius, the Mangler and the
Levy ones

§(x) - J (o) 7=
7(X-1\=“/‘/%_3-J5”“‘3

By applying such transformation to the local equation for

(22)

(23)

the mass (13), momentum (14) and energy (16) conservations,
and by introducing as dependent variables

f, - 3 /og = wfue
% H/He

the momentum and energy equations can be transformed, with

(2L)
(25)

the aid of the continuity equation, into the classical form:

(AR¥ag), + g = (2578} 52 (4 - PeJg)
(AR ‘37) *Hq . (’-k R ("ae-1) (1\&1'1)7
with R= fr/r.,} and;(: Ve ({’f‘/fe,“:) being C =

f’w r‘ulrg e the Chapman Rubesin constant.

All derivatives with respect to } within the boundary layer
have been neglected, thus reducing the partial differential
equations in V( and S to ordinary differential equations in the
single variable vz

(2

IM.

.——

(27)

Associated to the above equations are the boundary
conditions.
At the surface of the body

{y (2] 3(e] =
At the edge of the boundary layer

Jnl=l=1 (=)

Iri order that the transformed equations (26) and (27) be
similar, that is to say in order to have solutions independent on
the variable 5, it is necessary that the dependent variables are
functions only of 1 restrictive conditions on the free stream

0

‘xw (25)

1 (29)

pressure and temperature distribution at the outher edge of the
boundary layer have to be imposed to satisfy the similarity
requirements.

The momentum and energy equations reduce for similar
flows to the form

cand A= PR /pupe = Alq)
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(3)
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with/:l the modified Falkner-Skan parameter, related to the
i i i = = (28 ue)(To /i) due
velocity gradient, defined as =2wm = ue e ay

(34

independent on 3 and
L= Tw /7o the normalized wall temperature parameter
with :ro the frge stream stagnation temperature,
F:(uﬂ/zﬂ,)(u‘-/q_) the hypersonic parameter and w, the

exponent of the viscosity - temperature relation.

and

Solutions to the above similar equations with appropriate
boundary conditions have been obtained among others by Dewey
and Gross [5] as a function of the pressure gradient parameter rs
with, tw

Such solutions are called similar because the velocity and

67 w , P, as parameters.

the temperature or enthalpy profiles are “affine” or “’similar” at
various locations along the body, differring only by a scale factor.

In cases when the simularity conditions are not applicable
no general method of solution has yet been found and use has to
be done of numerical solutions.

A very relevant approach that enlarges the importance of
similar solutions and allows the approximate treatment of non
similar cases is the one discussed by Lees [6] known as the

" Local Similarity’* approach.

All the therms in the boundary layer similar equations
dependent on 3 arising from the external flow or wall
conditions, are assumed to have their local values that can change
arbitrarely along the body surface. ’

"Local Similarity’’ represents essentially a patching together
of local similar solutions; the x-wise story of the flow is ignored
except as it is contained in the external and wall conditions; the
validity of such approximation depends on the fact that the
external flow properties vary slowly with respect to j that is to

say along the x coordinate.

Integral or global equations

Among the approximate methods very powerful have
turned out to be the integral ones based essentially on the Von
Karman integral approach idea.

The intregral methods treating the boundary layer problem
from a global point of view give evidence only to these quantities
that representing the boundary layer effect as a whole directly
allow the definition of the shear stress and the heat flux at the
wall, such vuantities are obtained not on the basis of derivatives
of the velocity and enthalpy profiles but in relation to the
evolution along the body surface of some appropriate integral
quantities defined as boundary layer dynamic and thermal
thicknesses.

The integral equations can be established by making the
balance of mass, momentum and energy for a finite volume of
gas encompassing the complete boundary layer thickness, instead
than for the elementary volume, or formally can be obtained
respect to “y"’
equations from the wall up to the external edge of the boundary

integrating with the local boundary layer



layer. A set of ordinary differential equations in terms of the
boundary layer thickness integral parameters are obtained, that
satisfy the boundary conditions at the wall and at the outer edge
of the boundary layer.

The original local boundary layer equations are not satisfied
for every fluid particle within the boundary layer, but exactly
only in a stratum near to the wall and near to the region of
transition to the external flow, while in the boundary layer core
region the differential equations are satisfied only as an average.

The classical integral technique has been originally applied
by Von Karman [7] to the momentum equation of an
the method has been
extended to the high speed compressible boundary

incompressible boundary layer flow;
layer
conditions by introduction of an energy integral equation. The
simultaneous solution of the two integral equations provides the
approximate solution of the boundary layer global properties at
the wall.

The frontier of the boundary layer, up to which the
integration has to be made, is fixed at the distance 1:5(2:)
from the wall at which the grandients in the velocity and
temperature profile due to the wall presence are vanishing and
the external inviscid flow conditions are ratched; the values of
the velocity components, the density, the temperature and the
enthalpy there are respectively:

Mo, Ve, fe , Te, He

~at 1,5 (33)

Three fundamental boundary layer thicknesses are usually
defined representing respectively the loss of mass flow, of
momentum, and of energy associated to the presence of the
boundary layer with respect to the external flow values.
Dlsplacement thickness

J(4—f’u/f ue) dy (34)
Momentum tplckness
0= | Fupe (1- 1) (35
2]
Energy or totale enthalpy thickness

A 1 e (4 #/me) dy

that represent the integral parameters in term of which the
integral boundary layer equations are expressed.

(3¢)

By integrating from the wall {y = O ) to the boundary layer
edge (y =3 ) the continuity, (13) X momentum {14) and the
energy (16) local equations the corresponding global or integral
equations are obtained.

%-fA(‘-B)[Ueél‘%

)
A AT

1 ] d &
oc\l_i+g[(r¢z_)u du f"c 0_'1;: r-_r] Zw/f,,u,, (39}
dA 2 du d de =l
SR Al a;h}; _(ZJ:_: %% a—]_“] [petie te  (39)

with B = 5-/A and F = A/B called shape parameters being

dependent uniquely on the skape of the velocity and entlphy
profiles within the boundary layer.
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The continuity integral equations relates the displacement
thickness A to the deviation of the external flow field velocity
vector Ve Jme induced by the presence of the body and due to
the boundary layer building.up; it involves also the boundary
layer thickness d (via the shape parameter B) in addition to the
external flow and body configuration parameters.

The momentum integral equation relates the momentum
thickness © to the shear stress at the wall expressed as Fanning
friction factor f = 'Zw/fguf' it involves also the displacement
thickness A (via the shape parameter F) in addition to the

external flow and body configuration parameters.

The energy integral equation relates the energy thickness A.
directly to the heat qux at the wall q expressed in the form of
Stanton number St’ qw /Fe Ue He it involves only the
external flow and the body configuration parameters.

The classical approach to solve with the aid of the integral
equations, the boundary layer problems is to assume suitable
{( /5] and
for the temperature dlstrlbutuon(T-Tw)/ 'e-TWJ 3( /b'}satlsfymg
the appropriate boundary conditions at the wall and at the outer

expression for the velocity distribution A /ue =

edge, containing as free parameter a suitably chosen boundary
layer thickness, and to express all the terms as a function of this
free parameter, that is determined with the aid of the integral
equation.

Pohlhausen [ 8] has developed a method successively
ameliorated by Holstein and Bohlen [9], on the basis of the Von
Karman momentum equation for two dimensional
incompressible flow that is based on a fourth degree
approximation of the velocity profile; the method has been
extended by Tomotika [1 0] to include axisymmetric bodies of
revolution.

The same approach has been adopted by Gruschwitz [1 1]
for solving compressible boundary layers flows along adiabatic
wall accounting for the momentum and Kinetic energy integral
equations, while Morris and Smith [12] developed a very general
method for heat conducting walls that includes the case of
variable surface temperature. Another generalisation of the
Pohlhausen method is due to Kalikhman [13] who solved the
momentum and energy integral equation assuming fourth order
velocity and temperature profiles.

In general some difficulties arise in the practical applications
of such method leading to the solution of ordinary differential
equations so that only seldom they have been applied to specific
design conditions.

Another approach is based on the concept of combination
of the integral method and similar solutions that was first
introduced by Thwaites f14] for the incompressible flows with
arbitrary pressure gradients, he pointed out that to calculate the
boundary layer thickness and the skin friction distribution it is
not necessary to introduce explicitly assumptions concerning the
velocity profile, as all the methods derived from Pohlhausen do;
it is enough to obtain functional relations between the shear
stress at the wall, the shape parameter F and a local pressure
gradient parameter (6"/\)) due/dx and solve the ordinary
differented equation derived from the momentum integral
equation.



To obtain such relations Thwaites used the known similar
solution for incompressible -boundary layers obtaining a simple
solution by quadrature of the differential equation.

The approach has been extended by Rott and Crabtree
[1 5] to compressible flow over an adiabatic body, while Cohen
and Reshotko [16] have treated the case of bodies with heat
transfer.

In case of bodies with heat transfer the momentum integral
and the energy integral equations cannot be satisfied
simultaneously so that Cohen and Reshotko ignored the energy
equation and obtained the heat flux from the similar solutions
through the correlation determined only on the basis of the
momentum integral equations alone; if the energy integral
equation is used however in general two different answers are
obtained for the heat flux.

The problem of utilizing existing similar solutions in a
momentum integral method has been readdressed by Hayes [1 7]
through a modification of the classical approach by expressing
displacement, momentum and energy defect thicknesses in a
dimensionless from directly calculable from similar solution.

A - Jj(%’\['zJ M
o . [Tl M
A= [Ty (1)

2

Transformed momentum integral and energy integral
equations have been obtained taking into account the relations
existing in case of similar solution and an inconsistency has been
put into evidence on the evaluation of the heat flux distribution
at the wall from the energy equation, depending on whether the
complete equation or its similar form is used; such differences
disappear only if, e is proportional to A* along the body
surface.

To avoid such a problem Hayes developed a method for
solving simultaneously the momentum and energy integral
equations that gives the skin friction and the heat transfer at the
wall in a self consistent form; the solution of the set of equations
is not strightforward and may pose difficulties of mathematical
nature particularly for what concerns the stability, being required
a numerical solution.

A very attractive alternative method of solution of the
integral boundary layer equations has been established by Michel
[18], originally on the basis of the momentum equation alone,
allowing the determination of the evolution along the surface of
two dimensional and axisymmetric bodies, of the momentum
thickness and consequently of the shear stress at the wall.

The shear stress coefficient and the shape parameter F are
expressed as function of the momentum thickness © under the
assumption that the flat plate solution dependence is not altered
by the presence of the pressure gradients. The integral
momentum equation is therefore reduced to an ordinary
differential
thickness

equation in terms only of the momentum
that is determined once known the external flow

field velocity or pressure distribution and the body configuration
variation; in such a way the gradients effect are accounted for at
least in their primary effects.

On the basis of the momentum thickness distribution the
shear stress at the wall is evaluated reutilizing the same flat plate
relations used in the resolution; the heat flux distribution along
the body surface is determined without resorting to the energy
integral equation, but simply by applying the classical Reynolds
analogy in its flat plate form, also in presence of velocity or
pressure gradient in the external flow field.

The same technique has been followed successively by
Michel himself [19] to directly determine the heat flux at the
wall of a two dimensional or axisymmetric body in presence of
pressure on velocity gradients in the external flow field on the
basis of only the energy integral equation.

The heat flux at the wall has been related to the local value
of the energy thickness A, also in such a case the flat plate
solution has been utilized; to relate the heat flux to the energy
thickness use has been made of the Reynolds analogy factor
determined in the flat plate condition, so that the validity of
such analogy has been assumed implicitly also in presence of
gradients in the external flow properties.

The energy integral equation is therefore reducted to a
sinple ordinary differential equation in terms only of the energy
thickness A. that is determined once the external pressure or
velocity distribution and the body shape are known; also in such
a case the gradients effect not accounted in the relation between
the flux and the energy thickness, are accounted for in the
determination of the energy thickness at last for their primary
effects.

The Michel formulations are simple and the calculations are
very strighforward so that they have been used in several
applications even if they rely on the assumption that the external
flow gradients do not affect the relation between shear stress
coefficients, shape parameters and momentum thickness, that are
assumed to be extendable as well as the Reynolds analogy from
the flat plate condition.

PRESENT APPROACH TO
SOLUTION

INTEGRAL EQUATIONS

In order to improve the accuracy in the computation of
heat transfer in compressible boundary layer flows and to avoid
inconsistencies in the results, it is evident from what previously
recalled that the energy integral equation must also be considered
in addition to the classical momentum integral equation.

In the present approach both the meméntum integral
equation

Zlhl E“! -_ O‘g v 9 Fa2)4 O\ul ! d|¢ X dr"
/ dx ( )“L ax Fg dx l‘l a)( l
(110)

and the energy integral equations

= dA yoclue, g oodfe 3 dr’
qw/cueHl a_x, ""A'[l:f- ax /¢ o_(E ri dx] (“)
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are simultaneously dealt.
A new shape parameter, defined as the ratio of the energy
defect thickness A to the momentum defect thickness 2]

D=A/B (h2)

depending from the shape both of the velocity and the enthalpy
profiles within the boundary layer, is introduced.

The energy integral equation is rewritten in terms of this
new shape parameter

= d d 1 ot
Quo [pete He = Dd9 9db Do[xdw -k i, e
(h3)

Combining it with the momentum integral equation a new
form of the integral energy equation is obtained: that expresses
the heat flux at the wall in terms of the shear stress at the wall,
the momentum thickness © , and in addition the shape
parameters D and F, that is to say that involves the displacement,

momentum and energy defect thickness.

a2 o8]
(ki

The influence of the variations of the external inviscid flow
field boundary conditions is accounted for indirectly through the
shear stress term that has to be evaluated taking properly into
account the external flow non uniformities, and directly by the
term involving the velocity gradient.

The above relation contains as well the influence of the
variation of the shape parameters D along the surface of the body
that is expected from the results of Hayes to have a strong
influence on the heat flux at the wall.

The new energy integral equation (44) can be solved once
the value of the shear stress at the wall is suitably determined
from the resolution of the integral momentum equation (40).

Values of the shear stress term can be obtained according to
various different methods, for uniformity of treatment we will
outline a new approach consistent and simifar to the one we are
proposing for the energy integral equation.

Use of the similar solution results will be made in the
present approach, as in other methods, to obtain the dipendence
on the external flow field conditions of the quantities appearing
into the momentum and energy equations that are expressed in
terms of the parameters and functions defined in the treatment
of the similar solutions

'Cw/f’gu: = C,ufri‘f,mh}/ l/-;‘; (45)

s - ( Es/f’t“f’)(i/n) [T-Tf 1] (4]

9 =(ﬁ/y;uer’ j ‘97(._‘[7Jd7 (b7)

J‘-‘-’(r relle. J; {1 ("‘)
with

I“l('-%‘/‘*v-('-*“f',[?‘-w/r'-w"'? ey
I = L”\['((“\p'z’d? e
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defined in agreement with the analysis of Dewey and Gross {5].
The following form of the quantities appearing into the
momentum and energy equations can accordingly be established

6= che Ayl To (Bfpnd)’ (=)
R
. ,
6 j—x=czjf“'—‘”‘§%'7‘:ﬁ;:, cojlg (53)
B = (55 (o] | 52D

F@

(g I‘)[,’Ta%‘& = %? Fe d ]
(‘?77["IL)(?w/r°u°1)_l Z‘r & fpoue ) (59)

The shape parameters, as well can be put into relationship
with the similar solution functions, obtaining, from the Dewey
and Gross [5] results

Feb/p=(T/m 5L-L)/1

and, utilizing the results found by Hayes [17] for the energy

(55)

integral equation for similar flows:

D= Afo= 9,09/ %I

A set of three parameters are introduced for simplification
of the treatment:

M Il/‘['{’l(OI = r'(m'Pr, c",tw'w) (S}J

(5¢)

e b3F o Dl iSTaRet. ¢
REattes TRSE{=mnian) "

\P = ‘e,m[o] Iz= \f/(m

et w ) ()

that can be easily evaluated on the basis of the similar solutions
results.

To evaluate such parameters, as previously pointed out, use
will be made of the results of Dewey and Gross [5] who have
computed and tabulated for a large number of boundary layer
solutions the values of the quantities

{p!y, (a)’ zp? {0) ) Il ' ]-L
as a function of the basic parameters :
m velocity parameter, f Prandtl number, tw wall temperature o
viscosity exponent and G hypersonic parameter, previously defin-
ed.

Momentum integral equation

Taking into account for the quantities appearing into the
momentum integral equation the form previously obtained and



introducing the parameters above defined the equation can be
rewritten as:

—TL:'(&"/)%“:-) (i) °W+

feue peucl | dx

d ] ct We 4 (3
\f/[,'/f“’Tf;‘ 1/"‘& 'EL\—X" /Fe %Lx]-i—
- Y (mfp]” & (s (ooppend)

L dr
T dx

(o)

By introducing a skin friction parameter or Fanning factor

()Y § e~ e

defined as
f= 2a/peul (o1)

and two functions depending on the local external inviscid flow
boundary conditions and on the local boundary layer parameters,
defined as

Q(x)
P(x)

1

~ R/y/ (62
- (y‘f' %‘]% + T+ 1+ u) (63)

i

with

| e dr

T = /—IAt Cdx ¥ :" a_)_(
¥y A d ue
e A

three functions related only to the outer edge flow conditions
and to the body shape‘the momentum integral equations assumes
the form:

df _¢*9 +fP-o fot)
d x

By recognizing that the resulting first order and first degree
differential equation is of the Bernoulli type, the solution can be
lead to the one of the linear differential equations through the
tr_ansform of variable Y: {-z by setting P=-2P and
Q = R Q ; the solution therefore turns out to be simply

Y = [‘{D +J:§ exp( J: P_'clx) dx]/exf, (faalx)

(65)
that is to say the skin friction coefficiente is given by the

relationship
£ . (“)

e ﬂc. “eH ri \y
{[““ utmrriw{-z).]il }xfi° u:Fﬁp’Wa,‘}‘n
-y =

According to the above formula, the value of the skin
friction can be easily obtained in terms of known functions
evaluated at the edge of the boundary layer, once the shape of
the body is known, if the values of the function \’/ and F are
related to the inviscid flow conditions through the similar
solutions; in deriving the above solution the value of the shape
parameter F has been assumed to be slowly varying along the
body surface so that the local value can be utilized.

Wall temperature effects are accounted for in the evaluation
of f through values of \}/ and F, and in addition by the
Chapman Rubesin constant C = fw P / re e -

Energy integral equation

Similarly, taking into account for the quantities appearing
in the energy integral equation (eq L4 ) the form previously
obtained (eq51 ) (e952) (016‘5) and introducing the parameters
defined, the equation can be rewritten as:

C\w/ﬁuc He = %w /lo,,u,f' D+2.f'(j cz\lijs__on)}

The heat flux at the wall can be simply calculated, onE:?t)he
shear stress value at the wall is known, provided the values of the
parameters D, I, 2 , dependent on the local velocity gradient
through the parameter "m’’
al inviscid flow field by means of the similar solution results.

The energy integral equation shows as well through the term

X=2lydp.afidede  quy

, are obtained in terms of extern-

dw  dx

a dependence on the variation of the parameter D along the body
surface connected with the evolution of the external flow field
properties.

This term turns out to include as well the story of the
evolution of the boundary layer along the body, accounted for
by the transformed variable § (x) , defined as an integral
quantity (22) and can bexexpressed as

C fo Me arqc!
X=(2rca"%)' ( ; cffr:peuuuti X) C‘\aﬁx'=¢z

with é: 2r%_?_~=‘%(m,ﬁ-,0",zw,m) {‘ﬁ)

a parameter depending only on the similar solution results and

ey

& C fepetucri) dm (30

Z o LR fpeicrtt) e )

a function depending only on the known external flow field

properties at the outer edge of the boundary layer.
The momentum integral equation finally assumes the form

qu [peteHe= z"’/fguf{D["z"’-”‘]*}’Z} -

that for true similar flows, being by definition lm"constant along
the body surface and therefore Z=0O reduces to the simple form

Fuo [fete He = “"/r«uf{ Df'-“"-ﬂ}w

that evidentiates the effects played by the various boundary layer
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parameters.

THE EXTENDED REYNOLDS ANALOGY

The new form of the energy integral equation suggests by
itself the idea of attempting an extension of the Reynolds
analogy, that being derived from the integral boundary layer
equations in the form valid in presence of velocity or pressure
gradients at the edge of the boundary layer, has a wider range of
applications.

Defining a modified Stanton number as

St CIw /fg Ue He

related to the Stanton number previously introduced ( 9 ) by the

»

(73)

relationships
St = st (taw - Tw) /(Te/"'o) (75)

and introducing the shear stress coefficient, related to the shear
stress parameter previously defined { 61 ),

Ce. = rtw/-_.';fa.ucz =2f

the extension of the Reynolds analogy can be easily obtained

(#5)

from the new form of the integral energy equation { FI )
written in the form:

St'= Yy ¢t { p [ -zf‘zm]+}Z7§ (7¢)

The modified Reynolds analogy factors S that is related to
the classical one previously defined (12) by the sinple relation

§ = S* (faw-tw)/(Te/T) (77)
can be expressed as:
5*= D[l-ZPZM’]-\—@Z (78)

The proposed formula for the modified Reynolds analogy
factory evidentaties the influence of the non similarity effects
accounted for by the term.

§2-X - 25 9%y = 20 A0 -5 o

that can be evaluated on the basis of the similar solution results
factoré, once the external flow field properties lumped in the
*unction Z are known.

In case of similar solutions, characterized by a fixed value of

m’’ along the body surface, the Reynolds analogy factor
reduces to the form

S'- D[4-2Amw] (79)

with 1; "> a function, as well as D, of the velocity
gradient parameter 'm” that can be seen to have a strong
influence on the analogy factor.

For the case of uniform external flow conditions being
equal to zero the velocity gradient and the parameter “m"”, the
Reynolds analogy factor reduces to the values of the shape

parameter D, evalutated form = o

S*= (B)u-s (t0)
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a value that conserves the dependence from the other parameters
such as the Prandtl number, the wall temperature parameter and
the parameters > and (7 previously discussed.
The knowledge of the parameters D{56), I {57}, 3 (5¢),
?{é‘j],xrfﬁ)evaluated once for all on the basis of known similar
solutions, as functions of the velocity gradient parameter “m”
, and G~
de:ermination of the modified extended Reynolds analogy factor

S.

with fr , tw, w as parameters, allow the

The shear stress at the wall being obtained from the
momentum integral equation it is then possible to establish the
heat flux at the wall from the energy equation in a consistent
way in terms of free stream parameters.

EVALUATION OF THE BOUNDARY LAYER PARAMETERS

Functional relationship for the boundary layer parameters:
D,rs,é, )( appearing in the energy integral equation and

therefore in the Reynolds analogy factor, and \y , F
appearing in the momentum integral equation are obtained, as
several times anticipated, from similar solutions of the complete
boundary layer equations.

The results of Dewey and Gross [5] are utilized to establish
the relationships in terms of the five basic parameters appearing
in the boundary layer equations:

m = velocity gradient parameter m= §/ue Tofre ":_\J“—'
P, = Prandtl number Po=P&/K
t, = Wall temperature parameter t,= Tw [Te

w
w viscosity low temperature exponent 2
G° = hypersonic parameter 0= Ue /2He
For the case of zero velocity gradient {m = O) the effects of
all the other parameters is investigated to provide more generality
to the results, while for the cases with positive velocity gradient
{m > o) only the effect of the wall temperature parameter is

investigated for a selected tern of values of the other parameters

(e 0.F w= 0.7 = 4

A generalization of the formulas obtained, to include the
effect of the variation of these three parameters kept constant, is
of course possible but is beyond the present scope and will be
reported in a separate note. No results for the paramter F are
reported being easily obtainable from the ones relative to the
parameter Z.

All the parameters, being assumed of the form

Y=Y (wm bt o, w) are expressed as a product of two

Y=o Ve

the first function VY, is evaluated for a value of the velocity

functions

gradient parameter equal to zero, uniform flow condition, while
the second one \/H is defined as the value normalized with
respect to the zero velocity gradient case, all other parameters
being equal.



Uniform Flow Conditions

The. function \/o =\/5 {(m=2P, tw,wjrelative to the case of a
velocity gradient parameter equal to zero, is in turn expressed as
product of two functions:

Vor £-%
the first function §° = N.(m=o, br, l'w-—o,r,,w)evaluated for a
value of the wall temperature parameter equal to zero (cold wall
case} evidentiates the dependence on the Prandtl number (w, %
being kept as parameters); the second function G is defined as
the value normalized with respect to the zero wall temperature

parameter case, all toher parameters being equal, and evidentiates
the influence of the wall temperature parameter (w,% being kept

Z: jo(m:o, ?r,tw, . NJ

\l° (w:O,Pr’ tw=°, TUJ

as parameters).

General Case
Do

The following functions correlating, with a maximum error

Parameter

of about five per cent, the similar solution results, have been
obtained:

BalaroFe (81)
Co= fp[1-3"w01-5"] (42)
-4 e b e (¢3)
n o= tr[a,qyf*r_(n.x.1+o,;w)P,'] (€4)

no effect of the parameter w has been noticed.

The correlation has resulted possible only by normalizing
the wall temperature with respect to the adiabatic wall
temperature value, introducing the variable }: Tw / T o

The values of the adiabatic wall temperature utilized are the
ones found by Dewey and Gross by imposing 9'\., = 0 and
determining Tw, = Toaww by means of a double iteration
procedure; these values have been correlated by the relation

0,420+ (0,33 -0,22 w) ot
il

&

that has been found accurate within few percents.

(ts5)

The function E; a generalization of the Colburn correction
factor in the Reynolds analogy to account for the effects of the
hypersonic parameter 6*, is reported in figure 1, where a
comparison is made with the low speed results that have allowed
Nage! [20] to improve the Colburn correction factor by
changing the value of ""a”’ from 2/3 to 0,645 (value retained in
the prasent investigation for the case §=0 ).

The correlation function for the adiabatic wall temperature
is reported as a function of the Prandtl number in figure 2.

1o -] >
_' <2
1 e o: 0 ,//’//
6.15 1 Y = %
w~ =05 J/u/
P &0 e
& o
] ¥ 4
ol
= O:0 00<w«<)
+ c.050 ~ 87
-A ~ :05 ¢ }
\A\ A o1 )‘iw 8‘?
0.10 —— T 06 | — S 5
0.5 Pe 1 05 P, 1
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Fig. 1 (left) Parameter D,. Function?b( ﬁ-,v-) variable T
Fig. 2 (right) Adiabatic wall parameter tq.., & Tuw /T8

The strong dependence of D from the wall tempemture
parameter is shown in figure 3 where the correlation function
'tg is reported as a function of the normalized wall temperature

}"—Pr30< g <
P:0.7 o:0.5
P05 o.05
o

a 07
O t l

0 | TR o} T T T T 3 T e 1

0 05 4 1

Fig. 3 Parameter D,. Function 'ZD (§)

o

From the investigation of the similar solution results the

Parameter

value of the parameter [, has been found to be, for the majority
of the cases, equal to one, except for few cases with w =o0,5 and

G =1 for which lower values have been found; due to the small
deviations from the unity value and to the fact that such resuits
seem suspicious the simple relation

{54

(8¢)

has been retained.

Parameter 2,
The results of the similar solutions have been correlated

with a maximum error of about five percent by the relationship

?z = b * C U (?7)

Cs = 1 +dg (8¢)
with z

b= 1,0l - 1,78 Pr + 1,733 P

C =-%064117f 1,102 R*

i = (_ b4 77“+«3,qo-_ce,s’j Pr2'+(s'.sz0'2+

15 u.,e\ Pr+ (—l,ZZFEH, :3V+a,%‘3)



o

no noticeable effect of the parameter “\,,” has been found on
"b"” and “c”, the effect on"d, is negligeable and difficult to be
assessed.

The dependence on the wall temperature parameter has
been again obtained by introducing the variable g A 1 /l'w

The results are shown in figs. 4 and 5

1 e & e
N

\

Fig. 4 (left) Parameter Z . Function (_)Di(?r,r) variable U7

Fig. 8 (right) Parameter % Function ?Y( % w ) variable w.
4 -

ks =~ 0.5 4 1
Fig. b Parameterf‘,. Function 'zz(§). Different Prandti values

Parameter \J,
From the correlation of similar solution results the

relationship
S)W =
(Z‘F = A4+ a S <+ h %L

e +¢ w ()

(0]

with

T
€ = 2 Pe- 1t Protor

# = I2 Ptanes B -oef
and % .h defined as in footnote p. 14.
have been found that approximate reasonably well the values as
reported in figure 6 and 7.
For ?f' no noticable dependence on G has been found.
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Fig. 7 Parameter {, . Function y o (j ). Different Prandtl values
Y
Parameter X,

Having been found that with good accurancy F, ={ the

value of 7(, is by definition equal to the value of 24
Special case R=07 , We=oy =1

For the special case, typical of the supersonic flow
boundary layer conditions, characterized by the tern of values
above quoted for the Prandtl number P the viscosity parameter

w and the hypersonic parameter O, the values of the parameters

appearing in the definition of D, - previously
defined are:
a= o0,)us w=0,29l b= 0,50
<= 0,215 d = 2,50 e= -9 560
\E= 1,45¢ c* = 1 i3 h= 0,779

Velocity Gradient Effects
The external flow field non uniformities, characterized by
the parameter "'m’’ defined as:
o= (5] we ) (TofTe) ( AUe/dyg)
strongly influence  the boundary
o, r,z A,Y, %, F previously defined and
generically called M=\ (=, %, tw, G7 w};these effects have
been investigated by analyzing the influence of the Prandtl

layer  parameters

number & , the viscosity parameter w, and the hypersonic
parameter &, on the function \/...~ defined as the value of the
function \j normalized with respect to the zero velocity gradient
value \I° previously defined:



Ylm = Y(w\,Pr, tw;lr,w)/\/p(w:,, R’, tW: o, u)

The dependence of \/,,, on such parameters has turned out
to be rather complex, therefore only the results for the special
case characterized by Pr =0, F,wW=0,% U=] are reported
and discussed in detail.

The influence of the wall temperature, that has been found
to be very relevant, has been accounted for by utilizing the
parameter } =tw /tw the results obtained from the detailed
computations by Dewey and Gross [5] are correlated by
functions of the form:

\/M = 4 + K W\o( (3|)
with

K = K (3 ¢ P{lw,o-f,xr.d)

o = o((%; ﬁ—,u.v-][nuol)
Parameter D

The values of the parameter Dw, see fig. 8 are found to be
monotonically increasing with the value of the velocity gradient
parameter "‘m’’; the higher the value of the wall temperature the
higher is the value of D

The correlation functions result to be :

Ko = 0,75 § + 0,34 (92)

odp = 0,091 § + 0,757 (93)
=« T, 0.05 £0.062
Dm A 0.15 0.186
| + 0.4  0.495
® 0.6 0.742

0 B 2 3 4 m 05

Fig. 8 Parameter D,.,“".; ) variation with m

Case Pr=0,7 w=0,7 T= 4

Parameter [m
The values of the parameter [ see fig. 9, are found to be
monotonically decreasing with the value of the velocity gradient
parameter ‘'m’’; the higher the value of the wall temperature the
lower is the value of Thw,,.
The correlation functions result to be:
Kp =-0uisg - 0,62
O(l‘ = -D‘|66§ + 0,535

e T, 005 & 0062
s @i " DS
+ % " 0.kss
ol 0K, EIE

0.3

T T = T

0 B .2 23 4 m 05

Fig. 9 Parameter [, (M,g ) variation withwm.

Case =07 w=0,7 V=1

Parameter X,

The values of the parameter Z,,, see fig. 10, are found to be
monotonically decreasing with the value of the velocity gradient
parameter “'m’’; the lower the value of the wall temperature the
lower is the value of =, .

The correlation function result to be:

Ki = 9,560 §- 0,(55 {‘1"
Kg = Dohh g x0T (1)
Ei = 1,005 ¢ 0.062
A 0.15 0.186
] + 0.4 0.485
° 0.6 0.742
P
=
S
] NoA Tk 0\0—\__‘
Ba et °

\-\‘ +\
. .i:\\'F
| ' \‘

0.5

T T T T ==
0 1 2 .3 4 m 05
Fig. 10 Parameter ZM ('“|§ ) variation with m.

Case 07 w=z0,7 T=4
Parameter Xm

The values of the parameter )(,.. see fig. 11, are found to be
mnonotonically decreasing with the value of the velocity gradient
sarameter 'm’’; the lower the value of the wall temperature the
higher the value of A w

The correlation functions result to be:
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Ky = -0,27 § ~2q13 (98)
Ky = -o,105 § x05h (59)
l.a
W = T, 0.05 & 0.062
A 0.15 0.186
+ 0.4 0.495
§ ° 0.6 0.742
| \Q*
4 \.,.\\
g5 N
i o\+
3
1 2
g +
[ ]
02 T T T T 1
Y 1 2 3 4 m 05

Fig. 11 Parameter 7(;«‘"'& ) variation wiht m .

Parameter U/m

The values of the parameter P, see fig. 12, are found to
be monotonically decreasing with the value of the velocity
gradient parameter ‘‘m’’; the higher the value of the wall
temperature the higher is the value of Y

The correlation functions result to be :

Ky = 02kug +0,584 £3)

o = -0,296¢ § + 0,833 (404)

Y

Tw

=
[24]
h

e + > B

Fig. 12 Parameter (f)_ (h,t ) variation with m,

Case 1)"=0,7 wsz07 V=4

Non Similarity Effects

As previously discussed in the new treatment of the energy
integral equation, the parameter l} =20 AD /dm allows
to take into account, at least in an approximate first order effect
form, the effects of the variation along the body surface of the
velocity gradient parameter “m’’ on the new boundary layer

212

shape parameter D that has been introduced to consistently solve
the energy integral equation.

The relationship defining the parameter & on the basis of
the equations defining I" and D is conducted to the form

é: 2r|m Do C\D\m/dm

In virtue of the functional correlation found for the

(102)

parameter Dw the above relation assumes the form
olg =1
§= 2 Pm De KD DLa m 3 (I°3J

that allows an easy evaluation for an assigned value of the wall
temperature parameterj . Having defined D only for the
special case P =9,F, wyo3, =1 the values of <}' can be
determined only for such case.

CONCLUSIONS

The consistent solution of the momentum and energy
boundary layer integral equations, performed by means of the
introduction of a new boundary layer shape parameter D defined
as the ratio of the energy defect thickness _A_to the momentum
defect thickness ®, has allowed an extension of the classical
Reynolds Analogy to the more pratical cases of non uniform
external flow conditions.

The Reynolds analogy factor is expressed, for the
conditions of locally similar solutions validity, by the simple
relation:

S*= D[’l—Z)(m]

the boundary layer parameters D and 7(_have been related to the
value of the velocity gradient parameter w1 characterizing the
external non uniformity flow conditions, by means of correlation
formulas obtained on the basis of exact results of boundary layer
solutions.

The relevant effects of the basic parameters such as the wall
temperature o , the Prandtl number P , the
viscosity-temperature cxponent w, the hypersonic parameter G,
have been evidentiated in the correlation formulas, that have
been established only for the case of zero velocity gradient
w =0, while for the more general case v >0 only the effect of
the wall temperature has been assessed having treated a special
case with Pr:,O,?I w=9,3, 0=1.

The generalization of the formulas proposed to take into
Pr, w, o
introduces complexity into the formalism of the correlation

account also the influence of is feasible but
formulas and therefore has not been treated.

The proposed formula for the modified analogy factor
evidentaties as well the influence of non similarity effects
through an additional term that can be as well calculated on the
basis of the similar solutions correlations.

The large deviations from the value predictable with the
classical Reynolds Analogy are evidentiated, for the particular
case treated, in figure 13 where the results of the correlation



formulas obtained for the analogy factor S* are reported as a
function of the velocity gradient parameter v .

Fig. 13 Reynolds Analogy Factor S* variations with m,

The effect of the wall temperature isremarkable, the higher is
the temperature the lower turns out to the value of the analogy
factor S*.

The results reported clearly demonstrate the necessity of an
accurate evaluation of the Reynolds Analogy factor that properly
takes into account the influence of the velocity gradient
parameter and of the wall temperature level; the proposed
correlation formulas provide with a limited amount of
computational efford and a reasonable accurancy the mean to
correctly correlate the heat flux distribution along bidimensionai
and axisymmetric bodies to a known wall shear stress
distribution.
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%=Qr+n h= P0"+h

P: K?Prl* Kﬂ Pr +Kj
e KioPeia Ky R+ K

Lo 1 R ek fea Ky

n= K, R ks fr 4 ke
Ki= 35 w' - 155w + 82,6
Ky = -12,;w’+u’z,ww —o9,#5
Kay e [7,5 0 - k76w 423,28
Ky = -10Th5 w' w188 hw - 4,99
Kg = daiw’ -2b5Fw + 354
Ko = -G42 whag22 @ -2.8
Kp = P w5 75w 1o, ¢f
Kg = 12850 -2FT,53 W +1a8,C

= =15 6w 4hF, g w -132,82

#

Ko = -53,Fw 8,159 565¢
Ka = ﬂ,?awl—q;’.auq,g(,ar
Kz = -Z‘,??wl-rk'},hu_zz'gq
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